PHYSICAL / INORGANIC CHEMISTRY

DPP No. 13

Total Marks: 45

Max. Time: 48 min.

Topic : Ionic Equilibrium

Type of Questions M.M., Min.						
Single choice Objective ('-1' negative marking) Q.1 to Q.4 (3 marks, 3 min.)						[12, 12]
Comprehension ('-1' negative marking) Q.5 (i to vii) (3 marks, 3 min.) Subjective Questions ('-1' negative marking) Q.6 to Q.8 (4 marks, 5 min.)					(s, 3 min.)	[21, 21]
					(s, 5 min.)	[12, 15]
	(-) \ \ (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
1.		ng acids is monoprotic?				
	(A) H ₂ SO ₄	(B) HCIO ₄	(C) H ₃ PO ₃		(D) H ₃ PO ₄	
	(b) The weakest base is :					
	(A) CIO ₄	(B) HS ⁻	(C) Cl⁻		(D) NH ₃	
	(c) Which of the following can act both as a Bronsted acid & a Bronsted base?					
	(A) HCI	(B) H ₃ PO ₄	(C) HCO ₃		(D) O ²⁻	
2.	(a) The ionic product of water at 45 °C is 4×10^{-14} . What is pH of pure water at this temperature. [Take : $\log 2 = 0.3$]					
	(A) 6.7	(B) 7	(C) 7.3		(D) 13.4	
	(b) For which temperature the pOH of pure water can be greater than 7.					
	(A) 20 °C	(B) 30 °C	(C) 40 °C		(D) 50 °C	
3.	(a) For pure water at 10 °C and 60 °C , the correct statement is					
	(A) $pOH_{10^{\circ}C} = pOH_{60^{\circ}C}$	(B) pOH _{10°C} > pOH _{60°C}	(C) pOH _{60°C} > p	OH _{10℃}	(D) Can't say	
	(b) For pure water at 25 °C and 50 °C the correct statement is					
	(A) $pH_{25^{\circ}C} = pH_{50^{\circ}C}$	(B) $pH_{25^{\circ}C} > pH_{50^{\circ}C}$	(C) pH _{50°C} > pH	25°C	(D) Can't say	
4. ((a) At -50° C autoprotolysis of NH ₃ gives [NH ⁺ ₄] = 1 × 10 ⁻¹⁵ M hence, autoprotolysis constant of NH ₃ is:					
	(A) $\sqrt{1 \times 10^{-15}}$	(B) 1 × 10 ⁻³⁰	(C) 1 × 10 ⁻¹⁵		(D) 2 × 10 ⁻¹⁵	
	(b) The self ionization constant for pure formic acid, $K = [HCOOH_2^+][HCOO^-]$ has been estimated as 10^{-6} at room temperature .The density of formic acid is 1.15 g/cm ³ . The percentage of formic acid converted					
	to formate ion are :					
	(A) 0.002 %	(B) 0.004 %	(C) 0.006 %		(D) 0.008 %	

5. Comprehension

Relative strengths of conjugate acid base pairs:

- (i). Account for the acidic properties of nitrous acid in terms of
 - (i) Arrhenius theory and (ii) Bronsted Lowry theory
- (ii). Write a balanced equation for the dissociation of each of the following Bronsted Lowry acids in water.
 - (a) H₂SO₄
- (b) H₂O+
- (c) HSO₄-
- Also write conjugate base of the acid
- (iii). Which of the following reactions proceeds to the right and which proceeds to the left if you mix equal concentrations of reactants and products?
 - (A) $HF(aq) + NO_3^-(aq) \rightleftharpoons HNO_3(aq) + F^-(aq)$ (B) $NH_4^+(aq) + CO_3^{-2}$ (aq) $\rightleftharpoons HCO_3^-(aq) + NH_3(aq)$
- (iv). What are conjugate base of each of the following Bronsted Lowry acid?
 - (a) HOCI
- (b) HPO₄²⁻
- (c) H₂O
- (d) CH₃NH₃⁺

- (e) H₂CO₃
- (f) H₂
- (g) H₂O₂
- (h) HO₂-
- (v). Which of the following species behave as a strong acids or as strong base in aqueous solutions?
 - (a) HNO
- (b) HNO₃
- (c) NH₄+
- (d) CI-

- (e) H⁻
- (f) O²⁻
- (g) H₂SO₄
- (vi). Consider following reactions:
 - (a) H_2CO_3 (aq) + HSO_4^- (aq) $\Longrightarrow H_2SO_4$ (aq) + HCO_3^- (aq)
 - (b) HF (aq) + Cl $^-$ (aq) \rightleftharpoons HCl (aq) + F $^-$ (aq)
 - (c) HF (aq) + NH₃ (aq) \rightleftharpoons NH₄⁺ + F⁻ (aq)
 - (d) $HSO_4^-(aq) + CN^-(aq) \Longrightarrow HCN(aq) + SO_4^2(aq)$

Reactions proceeding to the right are:

- (A) a, b
- (B) c, d
- (C) a, c
- (D) b, d

(vii) If following proceed in forward side:

 $HNO_{2} + HF \rightleftharpoons H_{2}F^{+} + NO_{2}^{-}$; $CH_{3}COOH + HF \rightleftharpoons F^{-} + CH_{3}COOH_{2}^{+}$;

H₂O + CH₃ COOH C H₃O+ CH₃COO C

then increasing order of acid strength is:

- (A) H₂O < CH₃ COOH < HF < HNO₃
- (B) HNO, < HF < CH, COOH < H,O
- (C) HNO, < HF < H,O < CH, COOH
- (D) HNO, < CH, COOH < HF < H,O

6. Several acids are listed below with their respective equilibrium constants.

 $HF(aq) + H_2O(\ell) \rightleftharpoons H_2O^+(aq) + F^-(aq)$

$$K_{a} = 7.2 \times 10^{-4}$$

 $HS^{-}(aq) + H_2O(\ell) \rightleftharpoons H_3O + (aq) + S^{2-}(aq)$

$$K_{a} = 1.3 \times 10^{-11}$$

$$N_a = 1.3 \times 10^{-11}$$

CH₂COOH(aq) + H₂O(ℓ) \rightleftharpoons H₂O⁺(aq) + CH₂COO (aq) K₂ = 1.8 x10⁻⁵ (i) Which is the strongest acid? Which is the weakest?

- (ii) What is the conjugate base of the acid HF?
- (iii) Which acid has the weakest conjugate base?
- (iv) Which acid has the strongest conjugate base?
- 7. Several bases are listed below with their respective K_b values :

$$NH_3(aq) + H_2O(\ell) \rightleftharpoons NH_4^+(aq) + OH(aq)$$
.

$$K_h = 1.8 \times 10^{-5}$$

 $C_5H_5N(aq) + H_2O(\ell) \rightleftharpoons C_5H_5NH^+(aq) + OH^-(aq).$

$$K_b = 1.5 \times 10^{-9}$$

 $N_2H_4(aq) + H_2O(\ell) \rightleftharpoons N_2H_5^+(aq) + OH(aq)$.

$$K_b = 8.5 \times 10^{-7}$$

- (i) Which is the strongest base? Which is the weakest base.
- (ii) What is the conjugate acid of C_EH_EN?
- (iii) Which base has the strongest conjugate acid? Which has the weakest?
- 8. The dissociation constants of HCOOH & CH $_3$ COOH are 2 \times 10 $^{-4}$ & 1.6 \times 10 $^{-5}$ respectively . Calculate the relative strengths of the acids.

swer Kev

DPP No. #13

- 1. (a)
- (B)
- (b)
- (A)
- (c)
- (C)
- (a)
- (A)
- (A)

(b)

- 3. (a)
- (B)
- (b)
- (B)
- 4.
- (a) (B) (b) (B)

5. (i) HNO, (aq) \rightleftharpoons H⁺(aq) + NO, $\stackrel{-}{}$ (aq) (i)

Since, HNO, ionises to give H⁺ hence, it is a Arrhenius acid.

(ii) $HNO_{s}(I) + H_{s}O(aq) \rightleftharpoons H_{s}O^{+}(aq) + NO_{s}^{-}(aq)$

acid 2

base 1

HNO, donates a proton hence, it is an acid and changes to NO, (conjugate base). H,O(I) accepts the proton hence, it is a base and change to H₃O⁺ (conjugate acid). Thus HNO₂ is a Bronsted Lowry acid.

2.

(ii) (a) H₂SO₄ + H₂O ← H₃O+ + HSO₄base 2 acid 2 base 1 (conjugatete)

(iii) (A) to the left (B) to the right

Reaction proceed to words the side favoring formation of weak acid and weak base.

- (vi)
- (B)
- (vii)
 - (A)
- 6. (i) strongest acid, HF; weakest acid HS-.
- (ii) fluoride F-.
- (iii) The strongest acid (HF) has the weakest conjugate base.
- (iv) The weakest acid (HS-) has the stongest conjugate base.

- (i) strongest base,NH₃; weakest base C₅H₅N.
 (ii) C₅H₅NH⁺.
 (iii) C₅H₅N has the strongest conjugate acid, and NH₃ has the weakest conjugate acid.
- √12.5

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #13

- 2. (a) At 45°C $K_{\omega} = 4 \times 10^{-14} = [H^{+}] [OH^{-}].$ \Rightarrow $[H^{+}] = 2 \times 10^{-7}.$ \Rightarrow pH = 7 - log2 = 6.7.
 - (b) For H_2O $K_w \propto T$. \therefore $[H^+] \propto T$.
 - ∴ $pH \propto \frac{1}{T}$.
- 4. (a) $NH_3 + NH_3 \rightleftharpoons NH_4^+ + NH_2^-$. in selfionisation of NH_3 . $[NH_4^+] = [NH_2^-]$. $K_{(Amm)} = [NH_4^+] [NH_2^-] = 1 \times 10^{-30}$.
 - (b) K = [HCOOH₂+] [HCOO-] = 10⁻⁶.

 [HCOO-] = 10⁻³ mol/L.

 1 liter solution of HCOOH has = 1150 g mass.

 moles of (HCOOH) in 1 litre solution = $\frac{1150}{46}$ = 25 mol.

 out of 25 mol HCOOH 10⁻³ mol are ionised into HCOO- ions.

$$\therefore$$
 % dissociation = $\frac{10^{-3}}{25} \times 100 = 0.004\%$.

Since, HNO₂ ionises to give H⁺ hence, it is a Arrhenius acid.

(ii) $HNO_2(I) + H_2O(aq) \rightleftharpoons H_3O^+(aq) + NO_2^-(aq)$ acid 1 base 2 acid 2 base 1

 HNO_2 donates a proton hence, it is an acid and changes to NO_2^- (conjugate base). $H_2O(I)$ accepts the proton hence, it is a base and change to H_3O^+ (conjugate acid). Thus HNO_2 is a Bronsted Lowry acid.

- (ii) (a) $H_2SO_4 + H_2O \rightleftharpoons H_3O^+ + HSO_4^$ acid 1 base 2 acid 2 base 1 (conjugatete)
- (iii) (A) to the left (B) to the right
 Reaction proceed to words the side favoring formation of weak acid and weak base.

- (vi) (a) Acid strength $H_2SO_4 > H_2CO_3$. Basic strength $HCO_3^- > HSO_4^-$.
 - (b) Acid strength HCI > HF.
 - Basic strength F-> Cl-.
 - (c) Acid strength HF > NH₄⁺ Basic strength NH₃ > F⁻.
 - (d) Acid strength $HS\mathring{O}_4^- > HCN$. Basic strength $CN^- > SO_4^{2-}$.

c and d will move to the right.

8. Relative acidic strength of weak acids = $\sqrt{\frac{K_{a_1}}{K_{a_2}}} = \sqrt{\frac{2 \times 10^{-4}}{1.6 \times 10^{-5}}} = \sqrt{\frac{20}{1.6}} = \sqrt{12.5}$.

